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To reveal the relation between network structures found in two-dimensional biological systems, such as
protoplasmic tube networks in the plasmodium of true slime mold, and spatiotemporal oscillation patterns
emerged on the networks, we constructed coupled phase oscillators on weighted planar networks and investi-
gated their dynamics. Results showed that the distribution of edge weights in the networks strongly affects �i�
the propensity for global synchronization and �ii� emerging ratios of oscillation patterns, such as traveling and
concentric waves, even if the total weight is fixed. In-phase locking, traveling wave, and concentric wave
patterns were, respectively, observed most frequently in uniformly weighted, center weighted treelike, and
periphery weighted ring-shaped networks. Controlling the global spatiotemporal patterns with the weight
distribution given by the local weighting �coupling� rules might be useful in biological network systems
including the plasmodial networks and neural networks in the brain.
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I. INTRODUCTION

During the past several years, many researchers have
studied coupled dynamical systems on complex networks
�1,2�. Most studies specifically examine the emergence of
large-scale coherent behavior or synchronization. To date, it
has been shown that the synchronizability of dynamical sys-
tems on complex networks is affected strongly by the small-
world property of the networks, which is characterized by
high clustering coefficients and small path lengths, and the
heterogeneity in the degree �connectivity� distribution of the
networks �3,4�. Synchronizability can be enhanced by chang-
ing strength and directionality of the couplings between dy-
namical systems based on knowledge of the network topol-
ogy �5,6�.

Many of these results are derived using systems of small-
world and scale-free network models �7,8� representing com-
plex relational networks, such as the world wide web, bio-
chemical, and citation networks. A prominent feature of such
models is the existence of vertices with very large degree.
This implies that some vertices are connected to numerous
other network vertices. Some theoretical studies of the syn-
chronization of weighted networks are based on the assump-
tion that vertices in the networks have large degrees �9,10�.

However, degrees of the vertices in many real networks
are not so large, particularly when the network is “planar,”
i.e., the vertices and the edges are embedded in a two-
dimensional plane. Streets �11�, railways �12,13�, electric
power grids �7�, and ant-trail networks �14,15� are all ex-
amples of planar networks. In most cases of the planar net-
works, the highest degree is much smaller, and the largest

path length is much larger than in nonplanar networks �16�1.
It is considered that coupled dynamical systems on such

planar networks are difficult to synchronize because of their
large path lengths. Therefore, in these systems, the connec-
tion strength between the systems on the vertices, or
“weight” in the edges, becomes important to increase their
synchronizability. Although it is known that the weights in
the edges can increase the synchronizability in some systems
on nonplanar networks whose minimum degrees are large
�9,19�, it is not clear what kind of weighting increases the
synchronizability in the systems on planar networks.

Coupled dynamical systems on planar networks are found
in several biological systems. A good example is the plasmo-
dium of true slime mold, Physarum polycephalum, which
spreads with developing tube networks on a two-dimensional
plane �Fig. 1�. Partial bodies of the plasmodium, whose cell
thickness oscillates with a period of 1–2 min, interact mutu-
ally through protoplasmic streaming in the tubes that trans-
port nutrients and other substances within the organism �20�.
A prominent feature of these networks is the environmental
dependency in their topology �21�. For example, the plasmo-
dium develops treelike tube networks when the culture me-
dium contains harmful chemicals such as KCl �Fig. 1�b��,
whereas it develops latticelike ones when the medium con-
tains oatmeal, which is food for this organism �Figs. 1�a� and
1�c��. In addition to the change in the tube network topology,
widths of the tubes, which are not uniform but distributed
largely, are also changed. Because the tube width can be
considered as the coupling strength in coupled biological os-
cillators of Physarum plasmodium �22,23�, each edge in a
plasmodium network has its own “weight” that is directly
related to the coupling strength in the corresponding coupled
dynamical systems. Therefore, dynamic oscillation patterns
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1Note that some special planer networks, such as the Apollonian
networks �17�, can be scale-free and small-world simultaneously.
Coupled dynamical systems on such networks have also been stud-
ied �18�.
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observed in Physarum are thought to be controlled not only
by the network topology, but also by the weight distribution
on a network. The latter effects are of particular interest as a
general problem.

Therefore, in this paper, we investigate the relation be-
tween the weight distribution in the edges of planar networks
and the synchronization of coupled dynamical systems on
the networks. We try to answer the following questions. �i�
What kind of weight distribution on planar networks maxi-
mizes the probability for synchronization? �ii� What oscilla-
tion patterns emerge most frequently when the weight distri-
butions are those observed in the tube networks of
Physarum?

The paper is organized as follows. In Sec. II concrete
models for coupled phase oscillators on weighted planar net-
works are introduced. In Sec. III numerical results of the
model dynamics are presented by particularly addressing of
the weight distribution on observed phase locking and oscil-
lation patterns. In Sec. IV, necessary conditions are derived,
by which the model systems show phase locking. In Sec. V,
the biological relevance of the results described above is dis-
cussed in connection with the environment-dependent mor-
phology of the plasmodium.

II. MODEL

Models for coupled phase oscillators on weighted planar
networks are constructed as follows. First, weighted planar
networks whose topology is an intermixture of tree and lat-
tice are designed �Fig. 2�. The intermixture network can ex-
press both tree and latticelike networks by controlling weight
distribution in edges, as shown in Fig. 3. These networks
mimic observed plasmodial tube networks. Next, simple
weighting rules, with which the resulting weight distribu-
tions are symmetric, are given. By virtue of this simplicity,
the weight distribution can be determined using only a few
parameters. Finally, coupled phase oscillators are formulated
based on the weight value in each edge of the network. De-
tails of the topology design, the weighting rules including the

definitions of the parameters, and the model equations to be
solved are presented below.

A. Topology design

We design a network configuration that includes a tree as
well as a lattice. Such a topology is generated by adding
edges to a tree.

First, a “Cayley-tree,” with the branching number of b
and the maximum depth of dmax, is generated. This is a regu-
lar tree in which every vertex not in the depth of dmax has
degree �connectivity� b+1. The depth, d, of a given vertex is
defined as the shortest path length from the root to the ver-
tex. Therefore, the depth of the root vertex is zero �d=0�.
The number of vertices in depth d is given as

n�d� = �b + 1�bd−1 �1�

when d�1. Consequently, this network has N=1
+�d=1

dmaxn�d�=1+ �b+1��bdmax−1� / �b−1� vertices and N−1
edges. Next, we add edges by connecting the vertices in the
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FIG. 1. Morphology of plasmodium of true slime mold. Tubular
network structures observed on 0.9% agar media including ��a� and
�c�� 10% �w/v� oatmeal extract and �b� 10 mM KCl. Bar, 10 mm.
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FIG. 2. Designed topology with b=2 and dmax=3. Vertices are
shown as open circles with indexing numbers.
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FIG. 3. Effect of the ratios R and S on the appearance of the
weighted network with b=2 and dmax=3.

YUKI KAGAWA AND ATSUKO TAKAMATSU PHYSICAL REVIEW E 79, 046216 �2009�

046216-2



same depth side by side to make a ring. In this process, N
−1 edges are newly added, and all vertices but the root in-
crease their degrees by two. The resulting topology with b
=2 and dmax=3 �and therefore N=22� is shown in Fig. 2.

Each vertex on the network can be indexed using a unique
integer i=1,2 , . . . ,N such that shown in Fig. 2. Details of the
indexing method and the connection rules are given in the
Appendix.

B. Weighting rules

Each edge on the designed topology is weighted using
simple symmetrical rules defined with only three parameters,
R, S, and wtot. The parameter R determines weight distribu-
tions among edges along the radial direction of the designed
topology, and the parameter S determines the weights on the
concentric edges. The parameter wtot is the total weight,
which is assumed to be constant during the observation of
the phase dynamics. The definition of these three parameters
is given in the following along with the relation between
these weighting parameters and each edge weight in the net-
work.

First, we separate the edges into two groups. The first
group consists of N−1 edges in the radial direction. The
second group consists of the remainder N−1 edges in the
concentric direction. Below, weights on the edges belonging
to the first and the second groups are, respectively, denoted
by w and v. Second, we assume that the weights in the same
depth are identical. Accordingly, the weights can be deter-
mined using a single parameter d, such that w�d� and v�d�
are as described below. We define w�d� as the weight on the
edge that connects a vertex in depth d−1 and one in depth d.
Similarly v�d� is defined as the weight on the edge that con-
nects vertices in the same depth d. Third, we define the pa-
rameters R and S as the ratio of weights in the depth d+1 to
those in the depth d, and the ratio of weights in the concen-
tric direction to those in the radial direction, respectively.
Using w and v, these ratios are given as

R =
w�d + 1�

w�d�
=

v�d + 1�
v�d�

�2�

and

S =
v�d�
w�d�

, �3�

for any d. Similarly, the total weight wtot is given as

wtot = �
d=1

dmax

n�d��w�d� + v�d�� . �4�

For given R, S, and wtot, all of the weights on the edges in
the network with the branching number b and the maximum
depth dmax are determined uniquely as

w�d� = �
wtotR

d−1�bR − 1�
�1 + b��1 + S���bR�dmax − 1�

, bR � 1

wtotR
d−1

dmax�1 + b��1 + S�
, bR = 1,� �5�

and v�d�=Sw�d� for d=1,2 , . . . ,dmax.

In Fig. 3, we present how the ratios R and S affect the
appearance of one of the designed networks when wtot is
fixed. The parameter R determines the weight distribution
along the radial direction. Weights in the center region are
larger �smaller� than those in the periphery region when R
�1 �R�1�. Another parameter S determines whether the
network is treelike or ringlike. The networks becomes tree-
like �ringlike� ones when S�1 �S�1�. Treelike and ringlike
networks are frequently found in the tube networks of the
plasmodium �see Figs. 1�b� and 1�c�, respectively�. When the
special case of R=S=1, all the weights are identical, i.e.,
w�d�=v�d�=wtot /2�N−1�, for d=1,2 , . . . ,dmax.

C. Coupled oscillators

On the weighted networks characterized by b, dmax, R, S,
and wtot, coupled oscillators are constructed by putting an
oscillator on each vertex of the network and coupling the
nearest neighbors. As the oscillating units, we use phase os-
cillators �2,24�. Formulation of the dynamics of the coupled
oscillator system is as shown below,

d�i

dt
= �i + �

j

Aij sin�� j − �i� . �6�

Therein, �i�t� represents the instantaneous phase of the os-
cillator on the vertex i�=1,2 , . . . ,N�, �i is the natural fre-
quency of the oscillator, and Aij expresses the diffusive cou-
pling strength between the vertices i and j. We assume that
the coupling strength is directly proportional to the weights
on the corresponding edge. Here, we set the proportional
constant to be 1. Consequently, if vertices i and j are con-
nected, Aij�=Aji� is given as �i� Aij =w�d� when these vertices
are connected in the radial direction in depth d−1 and d, or
�ii� Aij =v�d� when they are connected in the concentric di-
rection in depth d.

III. RESULTS

We performed numerical calculation for the evolution of
phases for coupled phase oscillators on weighted networks
governed by Eq. �6� with the time step of 0.1. The network is
designed to be b=2 and dmax=3 so that the size N=22. The
natural frequencies �i are chosen randomly with a Gaussian
distribution with mean 1.0 and variance 0.01; the initial
phases of the oscillators are given randomly from �0,2��.
The resulting data, i.e., time series of the phases �i�t� , i
=1,2 , . . . ,N, are used �i� to calculate the probability that the
system shows phase locking Ppl and �ii� to estimate the
emerging ratio of distinct spatiotemporal oscillation patterns
in the systems on three typical weighted networks.

A. Phase locking

Phase locking between two phase oscillators �i and � j is
fulfilled when the phase shift �i�t�−� j�t� is time indepen-
dent. The system shows global synchronization if all pairs of
the oscillators in the network are phase locked.

To detect, numerically, the phase locking in the system,
the phase shifts ��i�t���i�t�−�1�t� , i=2,3 , . . . ,N for 900
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� t	1000, and their time variance


��i

2 � ���i�t� − ��i�t��2 �7�

are calculated. The time average in Eq. �7� is denoted by an
overline, e.g.,

��i�t� =
1

T2 − T1
	

T1

T2

��i�t�dt �8�

with T1=900 and T2=1000, where ��i �and ��i� is defined
in the region of �−� ,��. The condition �i=2

N 
��i

2 ���=0.01�
is examined for each initial condition to determine the phase

locking state practically2.
Figure 4 shows the probability that the system shows

phase locking �Ppl� in the parameter space of R and S for
given total weights wtot. In this figure, each probability is
given by the number of trials showing the phase locking
divided by the total number of trials �n=100� with random
initial condition. When the total weight is small, for example

2The value of � was chosen as follows. First we calculated the
sum of Eq. �7�, �i=2

N 
��i

2 , in the region we considered in this study
�i.e., wtot=3 ,5 ,8 ,15 and R ,S= �0,2��, and found that almost all
��99%� of the sum are �i� less than 10−10 or �ii� more than 10−1.
Therefore it is reasonable to consider that a threshold defining phase
synchronization resides in the region of �10−10,10−1�. In the present
study, we used �=10−2. However, any value of � between 10−10 and
10−1 makes little difference in subsequent results.
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FIG. 4. �Color online� ��a�–
�d�� Probability that the coupled
phase oscillators on the weighted
network show the phase locking
�Ppl� calculated in the R-S space.
Each probability for a given set of
R and S is given by the number of
samples showing the phase lock-
ing divided by the number of ob-
servations �n=100�. b=2,dmax=3,
and �a� wtot=3, �b� 5, �c� 8, and
�d� 15 are used. ��e� and �f�� Ppl

shown against R when �e� S=0.1
and �f� 1.0 for wtot=3, 5, 8, and
15.
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when wtot=3, the system rarely shows phase locking, irre-
spective of the parameters �Fig. 4�a��. On the other hand,
when the total weight is large, such as wtot=15, the system
almost always shows phase locking, irrespective of the pa-
rameters �Fig. 4�d��. When the total weight is moderate, such
as wtot=5 or 8, Ppl depends on the network morphology de-
termined by the weight distribution �Figs. 4�b� and 4�c��.

As portrayed in Figs. 4�b� and 4�f�, Ppl has its largest
value at R
1 and S
1, implying that the coupled phase
oscillators on uniformly weighted networks readily exhibit
phase locking. On the other hand, in the region of S	0.1,
corresponding to treelike structures, the probability Ppl has
its peak at R
0.8 for a given small S �see Fig. 4�e��. This
peak location implies that for phase locking, center weighted
tree or treelike networks are preferable to uniformly
weighted �i.e., R=1� ones.

B. Oscillation patterns

To measure the degree of coherence of collective behav-
ior, we calculated the order parameter K defined as the am-
plitude of the mean field �24�. We found that the system
shows the highest coherency when R is approximately 1 and
S is approximately 1 �data not shown�. If the order parameter
is very large �the largest value is 1�, we can deduce from the
value of K that all phases are almost identical, and the global
in-phase locking pattern is realized in the system. However,
generally, we cannot tell anything about the oscillation pat-
tern realized in the system based only on the value of K.

Consequently, to reveal the relation between the network
morphology and emerging oscillation patterns, we manually
classified the oscillation patterns that are visible in a com-
puter screen by displaying instantaneous phases on corre-
sponding vertices on the network for every time step. Al-
though these patterns are dependent on initial conditions, the
weight distribution on a given network topology affects the
emerging ratio for each pattern. We define three distinct os-
cillation patterns and manually classify observed spatiotem-
poral patterns into these three patterns and the others to
check this. Then we calculate the emerging ratio for each
defined pattern by counting quantities of observations.

We consider coupled phase oscillators on the following
three weighted networks: �i� Uniformly weighted network
�denoted as UW� �R=S=1.0�; �ii� Center-weighted treelike
network �CT� �R=0.8, S=0.1�; �iii� Periphery-weighted
ring-shaped network �PR� �R=S=1.8 with wtot=5.0 on the
topology of b=2 and dmax=3� �see Fig. 6�a��. These two-
dimensional weighted networks correspond to plasmodium
networks observed in various conditions.

In coupled phase oscillator systems, we can observe three
distinct oscillation patterns: the global in-phase locking �IP�,
the traveling wave �TW�, and the concentric wave �CW� pat-
terns. The first, IP, is the pattern in which phase shifts be-
tween any two oscillators are small. The TW pattern has a
large phase gradient. Finally, CW is the pattern with large
phase shifts between oscillators in the center region and in
the periphery region.

We use an image of time-averaged phase shifts for a given
initial condition to define these oscillation patterns rigor-

ously. Each vertex in the image is gray scaled with the value
of the time-averaged phase shift from the root, ��i, which is
given by Eq. �8� with T1=1000 and T2=1100 here. Example
images are shown in Fig. 5.

We consider that the phase shift is small and marked the
vertex i with the “X” letter in these images when ���i�
�� /4 is fulfilled. Based on the images of ��i, we define the
oscillation patterns IP, TW, and CW as follows. The oscilla-
tion pattern is defined as the pattern IP when more than 90%
of the vertices are marked with the X letters, as in Fig. 5�a�.
The oscillation pattern is defined as the pattern TW when the
vertices marked with Xs are clustered and sandwiched be-
tween the clustered vertices satisfying ��i�� /4 and those
satisfying ��i	−� /4 such as Fig. 5�b�, where the clustered
vertices can be a single vertex. Pattern TW pertains when a
pattern satisfies both definitions of patterns IP and TW. The
oscillation pattern is defined as the pattern CW when the
vertices marked with Xs are clustered and surrounded with
the clustered vertices satisfying ��i�� /4 or ��i	−� /4,
as shown in Fig. 5�c�.

Using the above definitions, we classify 500 observations
in coupled oscillators on each of the three weighted networks
into the patterns IP, TW, and CW, or other �O�. Results of the
classification are displayed in Fig. 6�b�. This figure clearly
illustrates the differences in the emerging ratios for the de-
fined oscillation patterns among the weighted networks of
three types. In coupled oscillators on the UW network, glo-
bal in-phase locking is observed more frequently than the
traveling wave. The opposite relation holds when the CT
network is used. Concentric wave patterns are visible fre-
quently when the PR network is used. We also calculate the
emerging ratios of the oscillation patterns under the condi-
tion of phase locking �see Fig. 6�c��. In this figure, the largest
emerging ratios of the patterns IP, TW, and CW are found,
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FIG. 5. Definition of the three distinct oscillation patterns based
on images of ��i. See text for the details of the definitions. ��a�, �b�,
and �c�� Example images of ��i on the UW network, respectively,
showing in-phase locking, traveling wave, and concentric wave pat-
terns. �d� An image of ��i on the CT network showing rotating
wave pattern. The “X” letters on the vertices represent that phase
differences between these vertices and the root �or center� vertex
are small. See text for the definition.
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respectively, in coupled oscillators on the UW, CT, and PR
networks.

The other distinct oscillation patterns, such as rotating
wave �Fig. 5�d��, are found with small emerging ratios
��3%�. We classify these patterns in O here.

IV. NECESSARY CONDITION BY WHICH THE SYSTEM
SHOWS PHASE LOCKING

In Fig. 4, we show that the weight distribution character-
ized by the parameters R and S drastically changes the prob-

ability for phase locking �Ppl�, even if the network topology
and the total weight wtot remain unchanged. We also show
that the UW network is preferable for phase locking.

In the following, we formally derive the necessary condi-
tion for phase locking, and show that the condition is less
strict for the UW network. This implies that coupled oscilla-
tors on the UW network can exhibit phase locking with a
large deviation among natural frequencies of its component
oscillators, with which those on the other weighted networks
never exhibit phase locking.

To derive the necessary condition, new variables �i��i
−�r are introduced, where �r is the instantaneous phase of
the reference oscillator. We can choose any oscillator as the

reference. When coupled oscillators show phase locking, �̇i
=0, i=1,2 , . . . ,N are fulfilled. Using Eq. �6�, these are re-
written as

��i = − �
j

Aij sin�� j − �i� + �
k

Ark sin�k, i = 1,2, . . . ,N ,

�9�

where ��i��i−�r is the difference between the natural fre-
quency of oscillator i and that of the reference �=�r�. In
addition, �i is the phase difference in the phase locking state.
If the solution �i , i=1, . . . ,N exists, the following condition
is satisfied:

���i� 	 ��
j

Aij sin�� j − �i�� + ��
k

Ark sin�k�
	 �

j

Aij + �
k

Ark = si + sr, �10�

where si�� jAij is the strength of the oscillator i, i.e., is the
sum of the weights on the edges connecting to the vertex
�oscillator�. Therefore, ���i�	si+sr is the necessary condi-
tion for which the coupled oscillators show phase locking.

When natural frequencies �i , i=1, . . . ,N are given ran-
domly with a Gaussian distribution with mean m and vari-
ance 
2, the mean deviation is given as ���i��=2�
2 /�.
Therefore, the necessary condition can be written as

�
2 	
��

2
min�si + sr� , �11�

where min�si+sr� is the minimum of the sum of arbitrary two
strengths. Figures 7�a�–7�c�, respectively, present the prob-
ability that the coupled oscillators on the UW, CT, and PR
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FIG. 6. �a� Schematic drawing of three typical networks used for
classification of the oscillation patterns emerged on them. These
weighted networks are constructed with the weighting parameters
of R=S=1.0 �UW: uniformly weighted network�, R=0.8 and S
=0.1 �CT: center weighted treelike network�, and R=S=1.8 �PR:
periphery weighted ring-shaped network�, on the topology of b=2
and dmax=3. The acronyms UW, CT, and PR, respectively, corre-
spond to the plasmodium networks portrayed in Figs. 1�a�–1�c�. ��b�
and �c�� Emerging ratio of the oscillation patterns found on the three
weighted networks defined in �a�. The oscillation patterns are in-
phase locking �denoted as IP, gray�, traveling wave �TW, black�,
and concentric wave �CW, striped� patterns. Also, O �white� in-
cludes all the other oscillation patterns. �b� All observations �n
=500� include cases of non-phase-locking, or �c� only the samples
showing the phase locking are used for the classification.
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FIG. 7. �Color online� ��a�, �b�, and �c�� Prob-
abilities that the coupled phase oscillators on the
UW, CT, and PR networks, respectively, show
phase locking, Ppl, calculated in the �
2−wtot

space. White dashed lines in the figures show
boundaries of the region where the coupled oscil-
lators satisfy the necessary condition for showing
the phase locking. The regions include the lower-
left corner.
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networks exhibit phase locking �Ppl� for given wtot= �0,5�
and �
2= �0,0.2�. The corresponding necessary conditions,
given by Eq. �11�, are consistent with the numerical results
�dashed lines in these figures�. Moreover, the area satisfying
the necessary condition for the system on the UW network is
the largest, which is consistent with the numerical results.

When the sum of the minimum and the second minimum
of the strength, i.e., min�si+sr� in Eq. �11�, is large, the nec-
essary condition is less strict. Therefore, we can assume that
coupled oscillators on the network show phase locking eas-
ily. In Fig. 8�a�, we show the minimum of the sum of two
strengths, min�si+sr�, on the R-S space. The sum has its
maximum value at the point of �R ,S�= �1.0,1.0�, where Ppl
also has its maximum in Fig. 4�b�. For nontreelike networks
�S�0.5�, the weight distribution of the probability for phase
locking �Ppl� shown in Fig. 4�b� seems to be explained quali-
tatively with the necessary condition presented here.

Mathematical expressions for min�si+sr� can be derived
analytically for any given b and dmax. When b=2 and dmax
=3 are used, the expressions in the region of R= �0,2� and
S= �0,2� are given as s�0�+s�1�, s�0�+s�3�, and 2s�3� ac-
cording to the regions shown in Fig. 8�b�, where s�d� ,d
=0,1 , . . . are the strengths of the vertex in the depth d. Those
are given as

s�d� = ��b + 1�w�1� , d = 0

�1 + 2S + bR�w�d� , d = 1,2, . . . ,dmax − 1

�1 + 2S�w�dmax� , d = dmax.
�

�12�

In those equation, w�d� ,d=1,2 , . . . ,dmax are given as Eq.
�5�.

V. DISCUSSION

As portrayed in Fig. 6, the weight distributions on a de-
signed topology can control the emerging ratio for the spa-
tiotemporal oscillation patterns. Coupled oscillators on UW
networks preferably show a global in-phase locking pattern.
Those on CT networks and PR networks preferably show
traveling wave and the concentric wave patterns, respec-
tively. Similarly, any other weighted network is inferred to
have its own preferable oscillation patterns.

Such rules may be used by the tube network in the plas-
modial true slime mold. In harmful conditions, the plasmodia
are presumed to show traveling-wave patterns frequently be-
cause they develop treelike networks �Fig. 1�b��. While in a
pleasant condition, they are presumed to show global in-
phase locking or concentric wave patterns because they de-
velop latticelike networks �Fig. 1�a� or 1�c��, corresponding
to the UW and PR networks. These predictions can be veri-
fied by experiments classifying oscillation patterns emerged
on the tube networks and estimating emerging ratios for each
pattern.

In the plasmodium, the TW patterns are known to emerge
during tactic migration �25,26�. During this process, the
phase wave propagated from the attractant and the phase
gradient and the migration velocity are in the same direction
�27�. Therefore, the high observation ratio of the TW patterns
in a harmful condition is biologically relevant because this
pattern can be regarded as migration toward the phase ad-
vance; the organism is expected to move away from the
harmful place.

Conversely, we can presume that the plasmodium show-
ing the CW patterns do not migrate but instead stay on the
same place. In fact, the CW patterns are observed in a con-
centrically extending plasmodium �28�. Accordingly, show-
ing the CW patterns in pleasant condition might also be bio-
logically relevant because the organism can stay near the
pleasant place.

Results of this study illustrate that the weight distribution,
as determined by local weight ratios R and S, strongly affects
the global synchronization and spatiotemporal oscillation
patterns, even if the network topology is fixed. The control
mechanism of the global spatiotemporal patterns by the local
coupling strength might be useful in biological network sys-
tems including the plasmodial networks and neural networks
in brain. In the latter networks, this implies the mechanism
controlling firing patterns in brain by changing coupling
strength between neurons. Such biological networks have
physical substance. Therefore, changing their topology is ex-
pected to be much harder than changing weights on the
edges. Changing the weight distribution is superior to chang-
ing the topology to control the system’s global behavior at
small cost or time. Therefore, to elucidate dynamic behaviors
observed in such biological networks, monitoring temporal
changes in the weight distribution must be necessary.

We have also studied dynamics of coupled logistic maps
on weighted planar networks, whose topology and weighting
rules are the same shown in the present study �29�. The prob-
ability finding phase synchronization �30� was calculated in
the parameter space of R and S using a moderate total weight
wtot. As a result, it is found that the high probability region of
phase synchronization resembles the one of phase locking
shown in Fig. 4. In fact, coupled maps on uniformly
weighted networks �R
1,S
1� show the highest probabil-
ity of phase synchronization. Therefore we speculate that the
relation between probability showing global synchronization
and local coupling strength, or weight distribution in a given
network, is less dependent on types of oscillators, i.e.,
whether the system is composed of phase oscillators or
maps.

It might be necessary to extend the present simple model
by introducing asymmetry in the network topology in addi-

R0.0 2.0

S

0.0

2.0

(a)

0 1/7
min(s + s )/

(b)

2s(3)

s(0)+s(3)

s(0)+s(1)

i r wtot

FIG. 8. �Color online� �a� Sum of the minimum and the second
minimum of the strength, min�si+sr�, calculated in the R-S space.
�b� Mathematical expressions for min�si+sr� in the case of b=2 and
dmax=3. s�d� ,d=0,1 ,3 are given as Eq. �12�.
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tion to the weight distribution to model the dynamics of
highly asymmetric and heterogeneous real biological net-
works. Time delays also demand consideration in the inter-
actions between oscillators �23,31–33�, and time evolutions
in the weights �coupling strength� �34�, for making specific
models. These model extensions and investigation of the re-
sulting dynamics are left as subjects for future work.
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APPENDIX: RULES FOR INDEXING AND CONNECTING
VERTICES IN THE NETWORK

Each vertex on the designed network can be indexed us-
ing a sequence of integers 
= �012¯d�, where d is the
vertex depth. Actually, 0 takes zero �0=0�, 1 can take
0 ,1 , . . . ,b, and  j�j�2� can take 0 ,1 , . . . ,b−1. For ex-
ample, the vertices numbered 1,2 , . . . ,10 in Fig. 2 are in-
dexed, respectively, as �0�, �00�, �01�, �02�, �000�, �001�,
�010�, �011�, �020�, and �021�. A vertex labeled by 
 can
have a unique integer index i�
�= i�0 ,1 , . . . ,d�
=1,2 , . . . ,N using the following rules: i�0�=1 and

i�0,1,2, . . . ,d� = 1 + d + �
�=1

d−1

�bd−� + �b�d − 1� ,

�A1�

where

�b�d� = 1 +
b + 1

b − 1
�bd − 1� . �A2�

Furthermore, �b�d� represents the number of vertices whose
depths are less than or equal to d. Using this function, the
total number of vertices can be expressed as N=�b�dmax�.
Similar indexing methods have appeared in previous reports
�35,36�.

The relation between 
 and i is unique. Therefore, we can
inversely derive 
 as a function i, i.e., 
�i�. Using this nota-
tion, connections between vertices in the designed network
can be described as follows: the root, indexed as 
�1�= �0�,
is connected to b+1 vertices �“daughters”�, whose indices
are 
�2+1�= �01� with 1=0 ,1 , . . . ,b; a vertex indexed as

�j�= �01¯d� �where j�1 or d�1� is connected to the
“mother” vertex indexed as �01¯d−1� and its “daugh-
ters” indexed as �01¯dd+1� with d+1=0,1 , . . . ,b−1, if
they exist. The 
�j� vertex is also connected to its “sisters”
�or “cousins” sometimes� indexed as 
�jnn� with jnn= j�1,
when j is not the minimum �i.e., �b�d−1�+1� or the maxi-
mum �i.e., �b�d�� index in the present depth d. If j=�b�d
−1�+1, then jnn is expected to be j+1 and �b�d�; if j
=�b�d�, then jnn is expected to be j−1 and �b�d−1�+1. For
example, when b=2 and j=2 �the minimum in the depth of
d=1�, then jnn is expected to be 3 and �2�1�=4. Conse-
quently, the vertex 
�2� is connected to the vertices 
�3� and

�4�, as well as the mother 
�1� and the daughters 
�5� and

�6� �see also Fig. 2�.

�1� S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, and D.
Hwang, Phys. Rep. 424, 175 �2006�.

�2� G. Osipov, J. Kurths, and C. Zhou, Synchronization in Oscil-
latory Networks �Springer, Berlin, 2007�.

�3� M. Barahona and L. M. Pecora, Phys. Rev. Lett. 89, 054101
�2002�.

�4� T. Nishikawa, A. E. Motter, Y. C. Lai, and F. C. Hoppensteadt,
Phys. Rev. Lett. 91, 014101 �2003�.

�5� A. Motter, C. Zhou, and J. Kurths, Europhys. Lett. 69, 334
�2005�.

�6� M. Chavez, D. U. Hwang, A. Amann, H. G. E. Hentschel, and
S. Boccaletti, Phys. Rev. Lett. 94, 218701 �2005�.

�7� D. Watts and S. Strogatz, Nature �London� 393, 440 �1998�.
�8� A. Barabási and R. Albert, Science 286, 509 �1999�.
�9� C. Zhou, A. E. Motter, and J. Kurths, Phys. Rev. Lett. 96,

034101 �2006�.
�10� J. G. Restrepo, E. Ott, and B. R. Hunt, Phys. Rev. Lett. 96,

254103 �2006�.
�11� A. Cardillo, S. Scellato, V. Latora, and S. Porta, Phys. Rev. E

73, 066107 �2006�.
�12� P. Sen, S. Dasgupta, A. Chatterjee, P. A. Sreeram, G. Mukher-

jee, and S. S. Manna, Phys. Rev. E 67, 036106 �2003�.
�13� J. Sienkiewicz and J. A. Holyst, Phys. Rev. E 72, 046127

�2005�.
�14� J. Buhl, J. Gautrais, R. Solé, P. Kuntz, S. Valverde, J. Deneu-

bourg, and G. Theraulaz, Eur. Phys. J. B 42, 123 �2004�.
�15� J. Buhl, J. Gautrais, J. Louis Deneubourg, P. Kuntz, and G.

Theraulaz, J. Theor. Biol. 243, 287 �2006�.
�16� M. Gastner and M. Newman, Eur. Phys. J. B 49, 247 �2006�.
�17� J. S. Andrade, H. J. Herrmann, R. F. S. Andrade, and L. R. da

Silva, Phys. Rev. Lett. 94, 018702 �2005�.
�18� P. G. Lind, J. A. C. Gallas, and H. J. Herrmann, Phys. Rev. E

70, 056207 �2004�.
�19� D. Li, M. Li, J. Wu, Z. Di, and Y. Fan, Eur. Phys. J. B 57, 423

�2007�.
�20� N. Kamiya, Annu. Rev. Plant Physiol. 32, 205 �1981�.
�21� A. Takamatsu, E. Takaba, and G. Takizawa, J. Theor. Biol.

256, 29 �2009�.
�22� A. Takamatsu, T. Fujii, H. Yokota, K. Hosokawa, T. Higuchi,

and I. Endo, Protoplasma 210, 164 �2000�.
�23� A. Takamatsu, T. Fujii, and I. Endo, Phys. Rev. Lett. 85, 2026

�2000�.
�24� Y. Kuramoto, Chemical Oscillations, Waves, and Turbulence

�Springer, Berlin, 1984�.
�25� Z. Hejnowicz and K. Wohlfarth-Bottermann, Planta 150, 144

�1980�.

YUKI KAGAWA AND ATSUKO TAKAMATSU PHYSICAL REVIEW E 79, 046216 �2009�

046216-8



�26� K. Matsumoto, T. Ueda, and Y. Kobatake, J. Theor. Biol. 122,
339 �1986�.

�27� Y. Miyake, S. Tabata, H. Murakami, M. Yano, and H. Shimizu,
J. Theor. Biol. 178, 341 �1996�.

�28� T. Ueda, K. Matsumoto, T. Akitaya, and Y. Kobatake, Exp.
Cell Res. 162, 486 �1986�.

�29� Y. Kagawa and A. Takamatsu, e-print arXiv:0904.1456v1.
�30� S. Jalan and R. E. Amritkar, Phys. Rev. Lett. 90, 014101

�2003�.
�31� F. M. Atay, J. Jost, and A. Wende, Phys. Rev. Lett. 92, 144101

�2004�.
�32� C. Masoller and A. C. Martí, Phys. Rev. Lett. 94, 134102

�2005�.
�33� P. Lind, A. Nunes, and J. Gallas, Physica A 371, 100 �2006�.
�34� A. Tero, R. Kobayashi, and T. Nakagaki, J. Theor. Biol. 244,

553 �2007�.
�35� P. M. Gade, H. A. Cerdeira, and R. Ramaswamy, Phys. Rev. E

52, 2478 �1995�.
�36� M. G. Cosenza and K. Tucci, Phys. Rev. E 64, 026208 �2001�.

SYNCHRONIZATION AND SPATIOTEMPORAL PATTERNS… PHYSICAL REVIEW E 79, 046216 �2009�

046216-9


